中華民國第61屆中小學科學展覽會作品說明書

科 别:生物科

組 别:國小組

作品名稱:有趣的麵包樹---麵包樹葉初探究

關鍵詞:麵包樹葉、塑形、____(最多3個)

編 號:

製作說明:

1. 說明書封面僅寫科別、組別、作品名稱及關鍵詞。

- 2.編號由國立臺灣科學教育館統一編列。
- 3.封面編排由參展作者自行設計。

第61屆中小學科學展覽會作品說明書

有趣的麵包樹—麵包樹葉初探究

有趣的麵包樹—麵包樹葉初探究

摘要

文獻資料紀錄植物的葉片經常被利用做成包裝容器,以月桃葉、粽葉最常被應用於生活。葉片耐外力折扭的程度、葉片承受溫度變化的狀況如何?讓人好奇。而麵包樹是校園常見植物,葉形大而圓是否有機會發展為「容器」?是探究的主題。透過研究發現,麵包樹葉冷凍退冰後,樹葉更柔軟且具彈性,適合形塑成為各種形狀。麵包樹葉片隔水熱可承受溫度的變化,樹葉形狀可維持不變。選取主葉脈長度介於 20-30cm 的麵包樹葉近行承重實驗,葉片可承載近 3000g 重的水量。利用手機顯微鏡進行觀察,葉脈呈現網狀分佈且細密,以廣用試紙測試樹葉汁液呈現弱酸性。麵包樹葉在塑形方面深具潛力,未來可朝生活應用進行深入研究。

壹、 研究動機

每個星期一走到活動中心升旗時,總會看見高大的麵包樹樹立在活動中心旁,我們總是好奇為何樹木的葉子面積如此大而茂密?樹葉表面光滑平順,而且掉落的葉子落到地面後,不會像其他葉子一樣,小朋友一踩踏就破破爛爛,完整的外形常常被撿來當成遊戲的玩具!

我們在自然課觀察過植物的葉子,知道樹葉可蒸散水分,缺水分的樹葉會出現垂頭枯萎的現象,也動手製作過美麗的葉脈書籤,發現葉脈與水分輸送有關聯。老師更介紹過各式的葉子在生活上的應用,包含端午節包粽子用的竹葉,粽葉讓粽子吃起來有淡淡竹葉香氣。以前的人會利用芒草葉做掃把作為清潔工具。原住民族利用月桃葉包出獨特的「阿拜」美食等。甚至遠在世界另一端的尼泊爾人,更利用樹葉製作為盛食物的容器,充分利用樹葉而且還相當環保。

這引發我們好奇,一樣是落葉,為何有的樹葉容易碎裂?有的卻不容易碎裂?葉子裡藏有什麼樣的祕密呢?尼泊爾人竟然可以將樹葉塑形成為容器?什麼樣的植物葉片適合製作成容器?不同樹葉間會不會有差異?這些好奇帶領我們探究麵包樹葉的秘密。

貳、文獻探究

一、植物多元的研究帶來啟發:我們以「科展群傑廳」的文獻資料為收集範圍,輸入「植物」為主的關鍵字,獲得相關的研究多達 994 筆,綜合研究作品與「葉子」有關的研究數量有 112 筆,以「樹葉」為關鍵字的研究則有 46 筆,分析植物相關的研究發現如下表。關於植物的研究多元且廣泛,從食用植物到看似無用的雜草,都隱藏研究問題,而植物的根莖葉甚至與環境間的關係都是探究的範圍,透過這樣的分析,讓我們發現以「植物」為研究題目的可行性。

研究類型	研究題目的方向性	研究植物的種類分析		
植物生態研究	植物與昆蟲的關係	1. 民俗植物:構樹、月桃、紅藜、小米		
植物物理研究	生長狀況、防塵量、	等		
植物化學研究	製作酵素、抗氧化性、氧化狀況、	2. 農產植物:鳳梨、稻子、蔬菜、洛神、		
	澱粉量	杭菊等		
植物生活應用	精油、製紙、書籤、染料	3. 特殊植物:石蓮花、含羞草、爬牆虎、		
		彩葉草等		

二、文獻資料指引探究方向:閱讀第56屆科展作品「粽望所歸,月葉最美」,提到月 桃葉可以裝東西並捆綁起來,是以前人們使用的「塑膠袋」。而校外教學參訪活動中 看見原住民族學校裡,展示利用植物製造成的器具(如右圖),看似簡單的樹葉容器, 仔細觀察樹葉容器中藏有很多原住民的生活智慧,包含植物種類的選擇?植物葉子如 何塑形?葉子的乾燥方式等,原住民的長輩們必須具備科學的實驗的精神,才能將利用樹葉的方法傳承下來。

閱讀過去的研究資料發現,對於植物的探究多數是抗氧化或 生長觀察紀錄,或植物應用在生活的研究,但葉子為何可以 製作成為容器或塑膠袋?可以做成容器的葉子它的塑形力 何如?樹葉可以乘載多少的力量?除了常見的植物(月桃葉、 竹葉、香蕉葉)被作為生活應用外,還有其他的植物的葉片

可以被使用嗎?如果有,科學的數據如何測量呢?這些都是以前的研究裡找不到的資料,而科學研究就是要深入追蹤「為什麼」。老師說:「知其然,更要知其所以然」是自然科學研究精神,麵包樹是校園常見的植物,除了樹形美、樹葉大之外,還能有哪些深入的學習值得探究?一連串的為什麼,讓我們進入麵包樹葉探究的主題。

參、 研究問題

一、發現研究主題方向:

整理過去的研究題材,發現植物在人類生活扮演重要的角色,無論是食衣住行育樂上都可以找到植物的身影,除了作為人類食物主要來源外,植物的根、莖、葉、花果實也經常應用於藥物、工具、染料等,關於植物的研究題材更是包羅萬象,國小科展研究主題的植物種類,環繞在月桃、構樹、無患子等生活中常見的民俗類植物,但關於麵包樹的研究卻很少見。查閱網路資料發現,關於麵包樹的資料,都圍繞在麵包樹如何流傳到台灣,麵包樹的用途包括麵包樹、莖、果實的生活應用,以及麵包樹的傳說故事,對於麵包樹葉在科學相關研究上幾乎是零。這樣的發現給了我們機會,麵包樹是校園常見的植物,就在我們的生活中,可以透過探究增加對校園植物的了解。

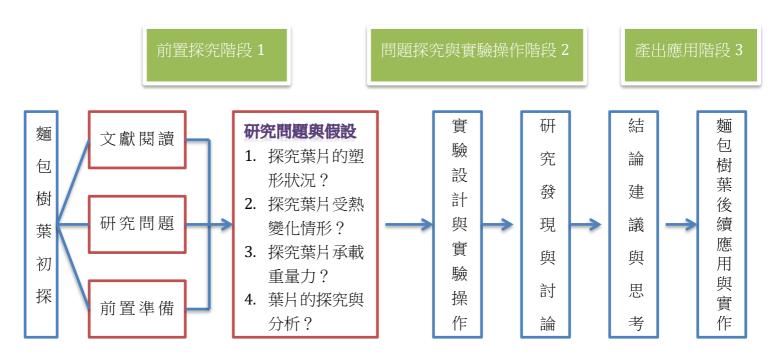
二、研究問題的發想:

對於麵包樹,我們從四個提問進行討論,進而搜集資料進行探究,希望發現更多麵包樹葉有趣的秘密,增加我們對麵包樹葉的了解。

提問一:觀察麵包樹葉,分析麵包樹葉是否可以「包裝」物品?如果原住民族利用月桃葉包東西,尼泊爾人可以用兩片樹葉折成生活用容器(盤子)盛裝食物,那麵包樹葉是否可以加以利用呢?麵包樹葉有沒有機會像月桃葉或是構樹被廣泛應用於生活?提問二:假設要利用樹葉製造成容器,麵包樹葉可以耐折、耐形狀改變而不斷裂嗎?

大而圓的麵包樹葉可以塑造成為不同的形狀嗎?麵包樹葉塑形力如何測量?

提問三:假如樹葉能當容器,麵包樹葉面對溫度的改變會產生哪些變化?


提問四:假設麵包樹葉當容器,需要承裝重量,麵包樹葉承載力如何?承載力又該如何測量?

我們觀察了麵包樹葉,發現樹葉形狀與課本上所描述的一樣,葉緣是圓弧形狀葉片像一顆大雞蛋。但仔細觀察麵包樹上的樹葉,有的葉緣卻呈現鋸齒狀,這樣的發現讓我

們很驚訝,同一叢的樹葉卻有不同的葉緣變化,更引發我們的 好奇?於是我們將提問問題進行整理,歸納成研究問題希望獲 得更多的了解。

- (一)麵包樹葉可以成為容器的材料嗎?做成容器的葉片須 具備哪些條件?
- (二)麵包樹葉可以塑形嗎?最佳塑形方法是什麼?
- (三)麵包樹葉可以承受溫度的變化嗎?對於溫度變化形變狀況如何?
- (四)麵包樹葉可以承受重量嗎?樹葉承載力如何?
- (五)麵包樹葉的其他發現?探究麵包樹未來發展的可能性?

肆、研究流程圖

伍、研究工具與材料

手機顯微鏡

溫度計與瓦斯爐

平板電腦

陸、研究歷程

- 一、麵包樹葉可以成為容器的材料嗎?做成容器的葉片須具備哪些條件?
- 1. 問題討論:我們思考葉子取代「塑膠」容器的可行性如何?如果樹葉要變身成為容器,需要具備哪些條件呢?我們討論出來的結論。
 - (1) 樹葉的耐水性佳:葉子需耐水或防水性佳, 遇水不容易爛掉具備適當厚度才能使用。
 - (2) 樹葉需具備彈性: 葉子要能外力的折與形變, 樹葉不能太脆弱, 裝重物才不容易破掉。
 - (3) 樹葉面積適當:面積不能太小,一片樹葉的面積就可以進行形狀的塑造。
 - (4) 樹葉外觀、樹葉的味道要能被多數人接受,樹葉方便取得。

針對我們討論的條件進行尋訪校園植物,觀察發現符合條件的植物葉子不多,我們先從面 積條件考量,挑選「大葉欖仁葉」、「麵包樹葉」、「菩提樹葉」符合單片樹葉面積大的 條件進行比較。

2. 觀察與發現:

- (1) 葉片防水條件比較:將三種葉片靜置在裝水的容器裡,靜置一樣時間後,將水倒乾淨後,以燕尾夾夾住葉柄的部分,同時將攤平的衛生紙放置在葉片上,觀察衛生紙掉落狀況。
- (2) 葉片彈性條件比較:將方形容器盒放置在桌上,兩盒子間的距離為5公分、10公分, 摘取三種新鮮樹葉分別坎入兩盒子間的距離裡,靜置一天後,觀察紀錄葉子的狀況。
- (3) 葉片面積狀況比較:將三種植物樹幹體區分為上、中、下三個部分,同時擷取不同區 塊的成熟樹葉三片,合計一種植物葉片9片,進行面積數量的計算並取其平均數進行 比較。
- (4) 其他發現:摘取新鮮樹葉並撿拾植物周圍的落葉進行觀察,為避免落葉的時間過久, 撿拾條件須注意葉片不能有破損,落葉葉柄密合但不能有皺摺為原則。
- 3.延伸提問:多大面積的麵包樹葉適合進行實驗操作?
 - (1) 問題討論:一棵麵包樹上有數不清的樹葉,我們該選擇多大面積的樹葉以進行實驗操作?為解決這一個問題,我們調查一般人家中經常使用的容器形狀?以及最常使用的容器面積大小是多少進行討論。

(2) 觀察操作:我們先觀察家中廚房的容器,找出最多的容器形狀是圓形,接著每一位成 員選取家中廚房內,經常使用的 10 個圓形容器測量直徑。操作與發現:我們選取家中 10 個經常使用的圓形盤子,測量每一個盤子的直徑,進行統計並取其平均數,發現盤 子的平均直徑落在 20 公分左右,為方便我們的實驗操作,我們選取麵包樹葉主要葉脈 長度超過 20 公分-30 公分進行實驗。

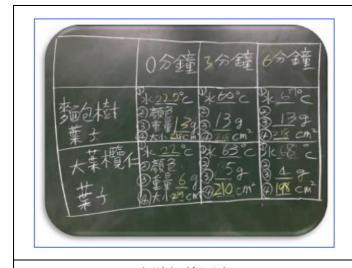
4.綜合討論:透過觀察與操作比較,發現麵包樹葉的特點,樹葉的面積是三者間最大,防水性三者之間差異不大,靜置在容器間的彈性維持力較佳,加上樹葉青綠色不容易出現蟲啃咬的狀況,即使是落葉也是乾淨的黃色,終年常綠色樹葉外形大而圓,上述對校園植物的觀察,讓我們決定針對麵包樹葉進行塑形、承載力等進行前導實驗,以增加對麵包樹葉的了解。

表 1:校園植物樹葉分析

樹葉種類 選擇條件	麵包樹葉	大葉欖仁葉	菩提樹葉
防水狀況	樹葉為常綠色,落葉黃色,	樹上葉片為綠色,部分出現	樹上葉綠色,落葉有綠或褐
彈性狀況	樹葉葉片上沒有斑點,揉碎	褐色(紅)或褐綠交錯,葉	色(紅),葉片上有斑點,
面積狀況	有淡淡的樹葉味道。葉面光	片上有斑點,揉碎有淡淡的	揉碎有淡淡的樹葉味道。葉
其他條件	滑防水性佳,以外力折葉片	樹葉味道,葉片無光澤,主	片和其他兩種相比較,葉片
	葉片不容易斷裂,外力去除	葉脈長度約在20左右。葉片	薄有外力會出現破裂,葉形
	後可以恢復原狀,主葉脈明	掉落後呈現褐色,以外力折	呈愛心狀,但季節交替的時
	顯,初期葉片小,成熟後葉	葉片會變形,外力消失後可	間會出現大量落葉的情況。
	脈長度長可以達30公分以	恢復原狀但落葉的外觀上會	
	上。	出現斑點或破裂。	

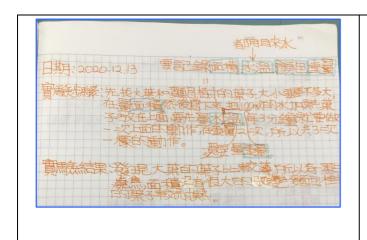
二、麵包樹葉可以塑形嗎?最佳塑形方法是什麼?

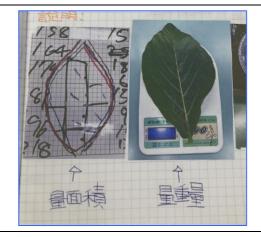
- 1. 問題討論:我們發現一般的樹葉受到外在力量的折、扭就會形變,甚至破裂。雖然麵 包樹葉彈力佳,不會立即破裂,但我們思考如何為麵包樹葉進行塑造形狀?
- 2. 探究過程的新發現:每週的科學課後,沒有用完的樹葉材料都會放入冰箱保存,以便下次使用。有一次冰箱冷藏室空間不夠,我們將麵包樹葉放入冷凍庫後,數日後,麵包樹葉從冷凍庫中取出來,大葉欖仁葉、菩提葉經過解凍後,樹葉形狀縮小,部分葉片甚至出現爛掉的現象,唯有麵包樹葉退冰後,形狀仍然維持,葉片柔軟更好塑形,無意中的發現帶給我們很大的驚喜。
- 3. 實驗探究:我們把麵包樹葉先冷凍再退冰進行處理,讓我們有機會將樹葉進行不同形狀的塑形。我們將樹葉進行圓柱形、圓盤形的塑造並將製造出來的不同形狀作品,放置在教室外的窗臺上,讓它自然風乾並進行三星期的觀察。發現塑形後的麵包樹葉形


狀上可維持三星期之久,之後會碎裂。但過程中發現圓形盤狀在皺摺接縫處會現象, 圓柱形則不會。

圖一:麵包樹葉塑形狀況

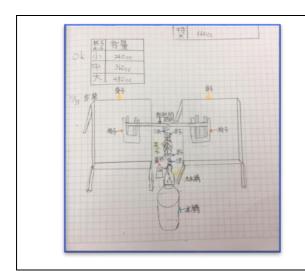
- 三、麵包樹葉可以承受溫度的變化嗎?對於溫度變化形變狀況如何?
- 1. 討論與思考:我們想了解麵包樹葉受熱會如何?我們進行大葉欖仁和麵包樹的受熱 反應的比較實驗,經過討論,我們決定每三分鐘紀錄葉子的顏色、水的溫度、葉子 大小和葉子的重量是否產生改變。
- 2. 實驗操作:首先我們使用百格板為測量工具,挑選兩片軸心葉脈相近的葉片,先測量兩片葉子的面積(大葉欖仁和麵包樹),接著再用電子秤測出葉子的重量,利用 100CC 的自來水進行測試(隔水加熱的方式),先測量並記錄未加熱過的水溫,接著再每隔三分鐘測量一次葉子的顏色、水的溫度、葉子大小和葉子的重量。
- 3. 發現與討論:麵包樹葉子經過隔水加熱後並未產身明顯的變化,但大葉欖仁的葉子變化明顯,受到溫度的改變,葉子的形狀變化快速,葉子重量減少了2g,葉片面積也減少了12公分,反觀麵包樹的葉子受熱後不會產生明顯的反應。

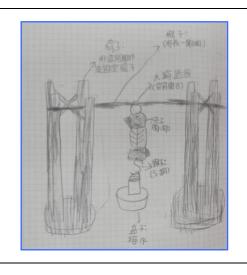

圖二:麵包樹葉與溫度改變的實驗操作



實驗紀錄圖表

隔水加熱的麵包樹葉


實驗操作與發現


實驗紀錄

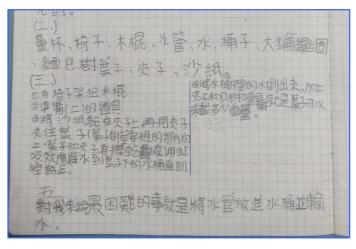
四、麵包樹葉可以承受重量嗎?樹葉承載力如何?

1. 構思與討論:一片葉子能承受多少的重量呢?如何針對麵包樹葉的承載力進行測量? 我們參考之前學長姐做過的實驗,透過測量水的重量以了解葉片的承受重量的狀況。 於是我們把測量設備、可能需要的材料、組裝的方式畫出設計圖示,之後進行試做 與修正。

圖三: 樹葉承載重量力測試草稿圖

2. 實驗材料與步驟:準備的器材有三張圓椅、兩張砂紙、兩個大夾子、一個 D 型登山扣、一個 6000cc 大型寶特瓶、一個裝水容器、一根水管、兩張圓桌、一根木棍。首現先在葉片的尾部畫一個 3.5cm 的紀號,同時再把葉片的前端畫一個 6cm 的記號,接者再將桌子上的椅子加高,轉動椅子讓木棒不用任何固定的情況下也不會晃動,接著再把砂紙黏在夾子兩側,再將 D 型扣扣上寶特瓶和大夾子的孔洞,最後再把夾子夾上葉子。

- 3. 實驗修正:如何測量一片軸心葉脈長度介於 20-30 公分的葉片,水桶懸掛在葉片上 而不掉落或破損?我們利用 L 夾內側黏貼砂紙,夾住麵包樹葉片兩端 6 公分處, L 夾兩端掛上登山用 D 掛勾,下方懸掛 6000CC 的水桶。
- 4. 實驗操作:準備大型水桶裝水,利用水管以及四年級學過的虹吸原理,將水由下方的水桶引入高處的寶特瓶水桶內,一直加水直到水桶落下後,計算水桶內的水量。 進行五次取得平均數,就可以得知麵包樹葉片所能承受的重量。


表 2:麵包樹葉承載重量記錄表

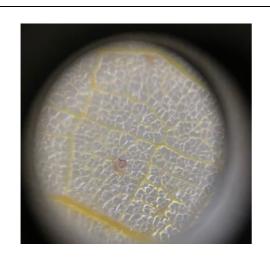
麵包葉片	葉脈長度	平均懸掛時間	平均懸掛重量
A	28.5cm	40.24 秒	2920g

5. 實驗發現:我們發現麵包樹葉的承受重量的能力超乎我們的想像,操作過程水的重量加上寶特瓶重量平均下來,一片葉子可承受的重量接近3000公克,實驗過程發現L來無法承受水重量而滑落,樹葉本身沒有任何的破損,讓我們對於麵包樹葉有新的想法。

圖四:葉片承載重量測試

工具組裝、操作與紀錄

實驗操作心得


五、探究麵包樹未來發展的可能性

- 1. 其他觀察發現:我們探究麵包樹的過程裡,發現麵包樹真是有趣的植物,同一棵麵 包樹葉,有部分葉緣是鋸齒狀,有的葉緣的形狀則是圓形。仔細觀察葉子的分布狀 況,發現葉緣為鋸齒狀的樹葉,多數在樹幹下方,越往樹頂上麵包樹葉緣多為圓形 狀,真是奇怪,但查閱資料卻得不到相關的解答,值得我們深入探究。
- 2. 麵包樹葉的承載力探究與葉脈有關嗎?
 - (1) 我們發現麵包樹葉耐重量讓我們很驚訝,為了更進一步了解麵包樹葉的秘密,

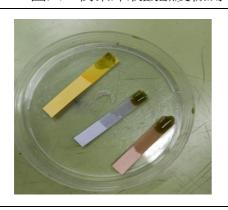
透過製作葉脈書籤的方式,配合手機顯微鏡,對麵包樹葉做更進一步的觀察。希望透過微距攝影的鏡頭(俗稱手機顯微鏡),配合平板電腦的操作,對麵包樹葉的葉脈做更細微的觀察。

- (2) 手機顯微鏡操作:鏡頭上方的照明燈打亮,再將平板的鏡頭和手機顯微鏡的鏡頭校準好,微調鏡頭與觀察標目物的焦距,按下平板電腦的拍照鍵即可。透過平板電腦的縮放功能,將照片調整到清新狀態進行觀察。
- (3) 葉脈書籤製作:製作葉脈書籤必須先準備洗衣皂、瓦斯爐、大鐵盆、牙刷及樹葉。接下來要把煮過四十分鐘的葉子泡在水裡,接著輕輕地用牙刷把皮刷掉。 注意,必須輕輕刷不然樹葉容易破掉。
- (4) 觀察與發現:我們觀察麵包樹葉發現葉脈書籤製作不易,煮過後的樹葉很薄、 很嫩必須小心處理,在顯微鏡下呈現交織現象非常的緊密,但如何更數據化的 計算葉脈分布密度,還需要更多資料與時間研究。。

圖五:顯微鏡下的葉脈分佈

顯微鏡下的麵包樹葉葉脈

製作葉脈書籤並利用手機推行觀察


3. 麵包樹葉汁液的酸鹼度為何?


隔水加熱的實驗操作中,發現植物的汁液會滲出,美術課時介紹植物做藍染的活動,植物的酸鹼度會影響的染料的狀態,那麵包樹葉的酸鹼度如何?

- (1) 工具材料:石蕊試紙兩種、廣用試紙、果汁機、滴管、培養皿、稱重機、剪刀 、杯子、葉子。
- (2) 製作步驟:剪下重量 15g 的葉子,把葉子放進果汁機,轉速調整為 2,時間二分 鍾。之後,把汁倒入杯子裡,並且把滴管放入杯子裡,讓滴管內擁有汁液,然 後把石蕊試紙和廣用試子放入培養皿上,然後把滴管拿起來在每個試紙滴一滴, 再判讀是樹葉汁液的酸鹼性。
- (3) 發現討論:我們使用廣用試紙與紅藍石蕊試紙,透過兩種試紙進行判讀,麵包

樹葉的汁液偏綠色, PH 值介於 6-7 間呈弱酸性。

圖六:樹葉汁液酸鹼度檢測

操作果汁機進行檢測

柒、結論與建議

透過麵包樹葉初探究的歷程,我們發現關於麵包樹葉有趣的兩三事,讓我們對麵包樹有更多的了解,除了麵包樹的果實可以食用外,探究樹葉裡包含葉脈、葉緣、葉子的塑形力, 尤其是樹葉冷凍、解凍後,葉子的塑形力,讓我們對麵包樹葉有了不一樣的看法。

- 一、麵包樹葉面對溫度的改變具有一定的承受力,在隔水加熱的狀態下,葉子的形狀改變不大。是麵包樹葉特別之處,未來可以深入探究,或許可發展出生活應用相關的發展。
- 二、麵包樹葉可以承受外力折並可以承受重量達 3000g, 這是麵包樹葉讓我們印象深刻的特點, 葉片不是我們想像中的脆弱, 讓我們對麵包樹葉的未來發展有很大的期待。
- 三、麵包樹葉的葉脈為網狀脈,在顯微鏡下方網狀排列緊密,或許跟麵包樹葉耐折、耐壓等力量的改變有關,建議可再進一步研究。
- 四、麵包樹葉的葉緣圓形、鋸齒形兩種形式,樹幹下方的葉緣為鋸齒狀多,樹梢上方多為圓形葉緣。是相當特別的地方,可作為深入研究方向。
- 五、麵包樹葉的汁液偏酸性,未來可以有哪些延伸用途值得探究。

捌、參考文獻資料

- 1. 波羅蜜屬新興果樹 農業知識入口網 https://kmweb.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri_life&id=54109
- 2. 蘭嶼麵包樹 國立自然科學博物館(07/12) https://www.nmns.edu.tw/flowers/2011/summer/07-12/
- 3. 樹葉的形狀為什麼那麼多?這個看似簡單的問題,實際上長久以來一直未解釋,最新研究 又望給出答案。隱藏在葉脈中的秘密原文網址:https://kknews.cc/science/m6bk4g2.html
- 4. 看尼泊爾婦女如何用葉子製作盤子 https://www.youtube.com/watch?v=7dMf6iKfh9M
- 5. 第 56 屆科展作品「粽望所歸,月葉最美」105 年台北市內湖區東湖國小。